Biotransformation of *ent*-Atisenes and *ent*-Beyerenes by *Rhizopus nigricans* and *Fusarium moniliforme* Cultures

Andrés García-Granados,* Andrés Parra, and José María Arias[†]

Departamento de Química Orgánica and Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, 18071-Granada, Spain

Received April 30, 1996[®]

Microbial transformations of *ent*-atisene and *ent*-beyerene compounds were carried out using cultures of *R. nigricans* and *F. moniliforme. Rhizopus nigricans* metabolized all of the substrates, at higher yields than *F. moniliforme*, to give an *ent*-3 β hydroxylation (60–65% for *ent*-atisenes and 80–85% for *ent*-beyerenes). Moreover, the double bond of the *ent*-beyerene skeleton was epoxidized by both fungi at lower yields (3–6%). *Fusarium moniliforme* produced a number of additional minor products by hydroxylation at other positions.

Numerous papers have been published on the microbial transformations of diterpene compounds,¹ although those devoted to the biotransformation of *ent*-beyerene^{2–7} and *ent*-atisene^{8,9} diterpenes are scarce. In previous papers we reported the bioconversion of some *ent*beyerenes by *Rhizopus nigricans* and *Curvularia lunata*.^{4,7} The biotransformation of the 14 β -hydroxylbeyerene derivative⁴ by *R. nigricans* gave the *ent*-15 α ,16 α epoxy derivative as the main metabolite in limited yield (4%). When the substrates were *ent*-beyerenes with a ketone function,⁷ the main action of *R. nigricans* was hydroxylation at C-3, although hydroxylations at C-1, C-12, and C-19 were also observed.

We describe herein the results of the biotransformation of *ent*-beyer-15-ene derivatives with different functions at C-12 by *R*, *nigricans* and *F*. *moniliforme*. In addition, we report the microbial transformations of various *ent*-atisene compounds functionalized at C-11, C-16, and C-17 by the mentioned fungi.

Results and Discussion

Acetylation of *ent*-11 β , 16 α , 17-trihydroxyatis-13-ene (atisideritol, 1)^{10,11} at room temperature gave principally compound 2, the C-11 and C-17 diacetate, and triacetyl derivative 3. When this acetylation was carried out at 0 °C and for a shorter time, however, acetate 4 was obtained. Mild saponification of *ent*-11 β ,17-diacetoxy- 16α -hydroxyatis-13-ene (2) gave substrate 5, which was the *ent*-11 β monoacetylated derivative. Oxidation of **4** yielded *ent*-17-acetoxy-16α-hydroxyatis-13-en-11-one (**6**), a new substrate for the following biotransformations. On the other hand, saponification of $ent-7\alpha$, 12α , 17triacetoxybeyer-15-ene $(7)^{12}$ gave a monoacetylated compound (8). The C-17 hydroxyl group was silvlated to give the 17-(tert-butyldimethylsilyl) derivative (9). Oxidation of 9 with CrO₃-Py under mild conditions gave the 12-oxo intermediate, compound 10, and reaction of 10 with BF₃-CH₂Cl₂ yielded ent-7α-acetoxy-17hydroxybeyer-15-en-12-one (11). Both *ent*-beyerenes 8 and 11 were then used as substrates for the microbial transformations.

Incubation of **5** with *R. nigricans* for **8** days gave metabolites **12** and **13** and a small amount of recovered

5. Metabolite 12 contained an additional oxygen, as was deduced from its molecular ion peak (m/z 378). Its ¹H-NMR spectrum showed a signal at δ 3.22 (1H, dd, J_1 = 4.5 Hz, $J_2 = 11.7$ Hz) assigned to H-3, and detailed study of the ¹³C-NMR data indicated that the new hydroxylation was equatorial at C-3. Thus, an α -effect on C-3 ($\Delta\delta$ +38.1), β -effects on C-2 ($\Delta\delta$ +8.5) and C-4 $(\Delta\delta$ +5.3), and γ -effects on C-1 $(\Delta\delta$ -1.5), C-18 $(\Delta\delta$ -5.4), and C-19 ($\Delta\delta$ -4.9) were observed. Metabolite 13 was the result of equatorial hydroxylation of substrate 5 at C-3 and deacetylation at C-11. The structure of **13** was supported by analysis of the ¹³C NMR. Thus, the primary action of *R. nigricans* on substrate 5 was *ent*- 3β hydroxylation. Biotransformation of substrate 5 by F. moniliforme for 12 days gave only the minor metabolite 14. Metabolite 14 had a new hydroxyl group whose geminal proton resonated at δ 3.49 (1H, dd, $J_1 =$ 5.1 Hz, $J_2 = 11.5$ Hz). Comparison of the ¹³C-NMR spectra of 5 and metabolite 14 indicated that ent-7 α hydroxylation had occurred. ¹³C-NMR signals were observed for C-7 (α -effect, $\Delta\delta$ +39.1), C-16 and C-6 (β effects, $\Delta\delta$ +9.5 and $\Delta\delta$ +4.4), and C-14 and C-15 (γ effects, $\Delta \delta$ -5.1 and $\Delta \delta$ -3.7).

Incubation of **6** by *F. moniliforme* for 12 days gave metabolites **15** and **16**. Metabolite **15** was the starting material deacetylated at C-17, and metabolite **16** was a trihydroxylated *ent*-atisenone with a molecular weight

S0163-3864(96)00426-0 CCC: S14 00 © 1997 American Chemical Society and American Society of Pharmacognogy

^{*} To whom correspondence should be addressed. Phone/FAX: 34-58-243364. E-mail: agarcia@goliat.ugr.es.

Departamento de Microbiología.

[®] Abstract published in *Advance ACS Abstracts,* January 15, 1997.

of 334. The ¹H-NMR spectrum of **16** showed a signal at δ 4.04 (1H, ddd, $J_1 = J_2 = 10.5$ Hz, $J_3 = 4.5$ Hz) due to an axial proton. The multiplicity and coupling constants of this signal indicated that the new hydroxyl group was situated at C-6 with an *ent*-6 α configuration, and ¹³C-NMR effects observed corroborated this conclusion.

Biotransformation of substrate **6** with *R. nigricans* provided four metabolites: **13**, **15**, **17**, and **18**. (Metabolite **13** was also obtained in the biotransformation of **5** by *R. nigricans*.) Metabolite **15** in this biotransformation was derived via deacetylation of **6** at C-17 with *F. moniliforme*. Another metabolite (**17**) obtained from this incubation showed a molecular peak of m/z 378, consistent with an additional hydroxyl group. The ¹H-NMR signal of the proton geminal to the new hydroxyl group at δ 3.21 (1H, dd, $J_1 = 4.6$ Hz, $J_2 = 11.5$ Hz) indicated an *ent*-3 β -H configuration. Metabolite **18** had a similar signal in its ¹H-NMR spectrum; its hydroxymethylene group was deacetylated. Thus, *R. nigricans* yields derivatives hydroxylated primarily at C-3 of the *ent*-atisene skeleton.

Incubation of ent-beyerene 8 with R. nigricans for 12 days gave metabolites 19 and 20 and starting material. The structure of metabolite 19, formed as the result of the hydroxylation of substrate 8, was deduced from its spectroscopic properties. The proton signal geminal to the new hydroxyl appeared in the ¹H-NMR spectrum at δ 3.18 (1H, dd, $J_1 = J_2 = 7.0$ Hz). From the multiplicity and coupling constants of this signal, it was deduced that the new hydroxyl group must be situated at C-3 in an *ent*-3 β configuration. This conclusion was supported by the ¹³C-NMR data, inasmuch as ¹³C-NMR effects similar to the above were observed for C-1, C-2, C-3, C-4, C-18, and C-19. Metabolite 20 did not present signals assignable to a double bond in its ¹H-NMR spectrum, but the spectrum contained signals consistent with an epoxide group and a new hydroxyl group. The new hydroxyl was at C-3 in an *ent*- 3β orientation, since its geminal proton was located at δ 3.18 (1H, dd, J_1 = 6.2 Hz, $J_2 = 8.4$ Hz) as in **19**. Thus, *R. nigricans* highly functionalized substrate 8 by equatorial (S) hydroxylation at C-3 and, at a slower rate, epoxidized the 15/16 double bond. When substrate 8 was incubated with F. moniliforme for 17 days, only a minor metabolite (21) and unaltered substrate were isolated. Metabolite 21 also had no signals typical of the 15/16 double bond in its ¹H-NMR spectrum. There were, however, signals at δ 3.37 (1H, d, J = 3.1 Hz) and at δ 3.14 (1H, d, J = 3.1Hz) assigned to both protons geminal to an epoxide group between C-15 and C-16. The structure of metabolite **21** was also confirmed by chemical correlation. Thus, treatment of 8 with m-CPBA gave rise to a product identical to metabolite 21.

Biotransformation of another *ent*-beyerene substrate (11) by *R. nigricans* for 12 days yielded metabolites **22** and **23** and starting material. The *ent*-3 α -H axial signal of **23** was located at δ 3.18 (1H, dd, $J_I = 4.7$ Hz, $J_2 = 11.4$ Hz), and the expected ¹³C-NMR effects were observed for the ring A carbons. Compound **23** had spectroscopic properties similar to those of **20**. Again, the primary action of *R. nigricans* on the *ent*-beyerene skeleton was an *ent*-3 β hydroxylation independent of the function at C-12. When the same substrate (11) was biotransformed by *F. moniliforme* for 17 days, three

minor metabolites were obtained: 24, 25, and 26, along with unaltered 4. In accordance with previous results and with ¹H- and ¹³C-NMR spectra of **24**, we established that this compound had an *ent*- 15α , 16α -epoxy group. The spectroscopic properties of 25 indicated that it was an *ent*-beyerene compound with a new hydroxyl group at C-1 in an *ent*-1 β configuration. Its geminal axial proton appeared at δ 3.35 (1H, dd, $J_1 = 5.2$ Hz, $J_2 =$ 10.5 Hz) in its ¹H-NMR spectrum. This conclusion was confirmed by the ¹³C-NMR effects observed: α -effect on C-1 ($\Delta\delta$ +41.2), β -effects on C-2 ($\Delta\delta$ +8.3) and on C-10 $(\Delta \delta$ +5.5), and γ -effects on C-3 $(\Delta \delta$ -2.0), on C-9 $(\Delta \delta$ -2.7), and on C-20 ($\Delta\delta$ -4.3). Metabolite **26** had the same function as 25 at C-1, and its C-7 hydroxyl group had been deacetylated. The structure of 24 was also corroborated by chemical correlation, since treatment of the ent-beyerene compound 11 with m-CPBA gave a product identical to 24. Another product appeared in this epoxidation (27) as the result of a Baeyer–Villiger process. Thus, we conclude that the primary action of R. nigricans on ent-atisene and ent-beyerene compounds, having the C-ring highly functionalized, is ent- 3β hydroxylation.

Experimental Section

General Experimental Procedures. Melting points were determined using a Kofler (Reichter) apparatus and are uncorrected. Optical rotations were measured in CHCl₃ or CH₃OH (1-dm tube) with a Jasco DIP-370 polarimeter. IR spectra were recorded on a Perkin-Elmer 983 G spectrometer or on a Nicolet 20SX FT-IR spectrometer. MS were determined with CI (CH₄) in a Hewlett-Packard 5988 A spectrometer. HRMS were obtained with a VG AutoSpec-Q high-resolution spectrometer. NMR spectra (400.13 MHz ¹H, 300.13 MHz ¹H, and 100.62 MHz ¹³C) were performed in CDCl₃ or

MeOD (which also provided the lock signal) in Brucker ARX-400 and Brucker AM-300 spectrometers. The assignments of ¹³C chemical shifts were done with the aid of distortionless enhancement by polarization transfer (DEPT) using a flip angle of 135°. Si gel SDS 60 A column chromatography (40–60 μ m) was used for flash chromatography. CH₂Cl₂ or CHCl₃ containing increasing amounts of Me₂CO was used as the eluent. Analytical plates (Si gel, Merck 60 G) were used for TLC analysis, and spots were visualized by spraying with H₂-SO₄–AcOH, followed by heating to 120°. Starting materials for this work, *ent*-11 β ,16 α ,17-trihydroxyatis-13-ene (**1**) and *ent*-7 α ,12 α ,17-triacetoxybeyer-15-ene (**7**), were isolated from *Sideritis granatensis* using published procedures.^{10–12}

Organism, Media, and Culture Conditions. Rhizopus nigricans CECT 2072 and Fusarium moniliforme CECT 2152 were obtained from the Colección Española de Cultivos Tipo (CECT), Departamento de Microbiología, Universidad de Valencia, Spain. The fungal cultures were stored in YEPGA medium containing 1% yeast extract, 1% peptone, 2% glucose, and 2% agar, at pH 5. A medium composed of peptone (0.1%), yeast extract (0.1%), beef extract (0.1%), and glucose (0.5%)at pH 5.7 in H₂O was used in all transformation experiments. Erlenmeyer flasks (250 mL) containing 80 mL of medium were inoculated with a suspension of R. nigricans or F. moniliforme. Incubations were maintained at 28 °C with gyratory shaking (150 rpm) for 6 days, after which the substrate (5, 6, 8, or 11) in EtOH was added.

Recovery and Purification of Metabolites. Cultures were filtered and pooled, cells were washed with H_2O and the liquid was saturated with NaCl and extracted with CH_2Cl_2 . These extracts were mixed, dried over anhydrous Na_2SO_4 , and evaporated at 40 °C under reduced pressure. Mixtures of products obtained were chromatographed on Si columns.

Acetylation of *ent*-11 β ,16 α ,17-Trihydroxyatis-13ene (1). Compound 1 (900 mg) was acetylated with Ac₂O-Py (2:4 mL) for 1 h at room temperature. Purification by flash chromatography provided diacetate **2** (720 mg, 80%) and triacetate **3** (90 mg, 10%).

ent-11 β ,17-Diacetoxy-16 α -hydroxyatis-13-ene (2): syrup; $[\alpha]^{25}D - 73^{\circ}$ (c 1, CHCl₃); IR vmax (CHCl₃) 3500, 1720, 1660, 750; ¹H NMR (δ , CDCl₃) 6.16 (1H, d, J =8.2 Hz, H-14), 5.89 (1H, dd, $J_1 = 6.1$ Hz, $J_2 = 8.2$ Hz, H-15), 5.86 (1H, dd, $J_1 = 3.0$ Hz, $J_2 = 12.0$ Hz, H-11), 3.82 (1H, d, J = 11.2 Hz, H-17), 3.67 (1H, d, J = 11.2Hz, H-17), 2.77 (1H, dd, $J_1 = 3.0$ Hz, $J_2 = 6.1$ Hz, H-12), 2.06 (3H, s, MeCOO), 1.96 (3H, s, MeCOO), 0.93, 0.83, 0.80 (3H each, s); ¹³C NMR (δ, CDCl₃) 40.6 (C-1), 18.3 (C-2), 41.9 (C-3), 33.2 (C-4), 56.0 (C-5), 19.5 (C-6), 36.5 (C-7), 39.9 (C-8), 58.9 (C-9), 38.8 (C-10), 73.0 (C-11), 44.9 (C-12), 127.5 (C-13), 139.8 (C-14), 48.3 (C-15), 74.2 (C-16), 70.3 (C-17), 34.0 (C-18), 22.1 (C-19), 17.2 (C-20), 21.8 (MeCO), 21.0 (MeCO), 171.0 (MeCO), 170.6 (MeCO); CIMS (CH₄) m/z 405 [M + 1]⁺ (10), 387 (25), 345 (25), 285 (100); HRMS (CI) calcd for C₂₄H₃₆O₅ 405.2480, found 405.2475.

ent-11 β ,16 α ,17-Triacetoxyatis-13-ene (3): syrup; $[\alpha]^{25}_{D} - 16^{\circ}$ (*c* 1, CHCl₃); IR ν max (CHCl₃) 1740, 1645, 740; ¹H NMR (δ , CDCl₃) 6.22 (1H, d, J = 8.0 Hz, H-14), 5.90 (1H, dd, $J_1 = 6.4$ Hz, $J_2 = 8.0$ Hz, H-15), 5.82 (1H, dd, $J_1 = 2.8$ Hz, $J_2 = 8.9$ Hz, H-11), 4.51 (1H, d, J = 1.0 12.0 Hz, H-17), 3.93 (1H, d, J = 12.0 Hz, H-17), 3.07 (1H, dd, $J_1 = 2.8$ Hz, $J_2 = 6.4$ Hz, H-12), 2.05 (3H, s, MeCOO), 2.04 (3H, s, MeCOO), 1.98 (3H, s, MeCOO), 0.93, 0.84, 0.81 (3H each, s); ¹³C NMR (δ , CDCl₃) 40.6 (C-1), 18.3 (C-2), 41.9 (C-3), 33.3 (C-4), 56.1 (C-5), 19.5 (C-6), 36.3 (C-7), 39.8 (C-8), 59.7 (C-9), 38.9 (C-10), 71.6 (C-11), 43.0 (C-12), 126.3 (C-13), 140.4 (C-14), 46.6 (C-15), 83.1 (C-16), 65.4 (C-17), 34.0 (C-18), 22.0 (C-19), 17.3 (C-20), 22.2 (*Me*CO), 21.8 (*Me*CO), 20.9 (*Me*CO), 170.8 (Me*CO*), 170.7 (Me*CO*), 170.3 (Me*CO*); CIMS (CH₄) m/z 447 [M + 1]⁺ (8), 387 (4), 327 (20), 267 (100); HRMS (CI) calcd for C₂₆H₃₈O₆ 447.2746, found 447.2725.

Partial Acetylation of *ent*-11 β ,16 α ,17-Trihydroxyatis-13-ene (1). Compound 1 (800 mg) was acetylated with Ac₂O-Py (2:4 mL) for 1 h at 0° C. Purification by flash chromatography provided 4 (720 mg, 90%).

ent-17-Acetoxy-11β,16α-dihydroxyatis-13-ene (4): mp 147–149 °C; $[\alpha]^{25}_{D}$ –25° (*c* 0.5, CHCl₃); IR *v*max (CHCl₃) 3480, 1735, 1650, 750; ¹H NMR (δ, CDCl₃) 6.30 (1H, d, J = 8.0 Hz, H-14), 6.00 (1H, dd, $J_1 = 6.0$ Hz, J_2 = 8.0 Hz, H-15), 4.75 (1H, br d, J = 8.0 Hz, H-11), 3.85 (1H, d, J = 11.2 Hz, H-17), 3.73 (1H, d, J = 11.2 Hz,H-17), 2.83 (1H, dd, $J_1 = 3.1$ Hz, $J_2 = 6.0$ Hz, H-12), 2.10 (3H, s, MeCOO), 0.97, 0.86, 0.84 (3H each, s); ¹³C NMR (δ, CDCl₃) 41.6 (C-1), 19.8 (C-2), 42.0 (C-3), 33.2 (C-4), 56.0 (C-5), 18.5 (C-6), 36.7 (C-7), 40.2 (C-8), 60.2 (C-9), 39.0 (C-10), 71.5 (C-11), 48.5 (C-12), 127.3 (C-13), 142.8 (C-14), 49.1 (C-15), 74.5 (C-16), 70.8 (C-17), 34.2 (C-18), 22.3 (C-19), 18.0 (C-20), 21.0 (MeCO), 171.4 (MeCO); CIMS (CH₄) m/z 363 [M + 1]⁺ (12), 303 (22), 285 (60), 267 (100); HRMS (CI) calcd for C₂₂H₃₄O₄ 363.2535, found 363.2549.

Saponification of *ent*-11 β ,17-Diacetoxy-16 α -hydroxyatis-13-ene (2). Compound 2 (700 mg) was dissolved in 25 mL of a MeOH $-H_2O$ (30:70) with 5% of KOH. The reaction was maintained at room temperature for 5 h, after which time it was neutralized, extracted with CH₂Cl₂, dried with anhydrous Na₂SO₄, and purified by flash chromatography, yielding 630 mg of 5 (90%).

ent-11β-Acetoxy-16α,17-dihydroxyatis-13-ene (5): mp 144–146 °C; $[\alpha]^{25}_{D}$ –62° (c 1, CHCl₃); IR vmax (CHCl₃) 3450, 1730, 1655, 745; ¹H NMR (δ, CDCl₃) 6.15 (1H, d, J = 8.0 Hz, H-14), 5.91 (1H, dd, $J_1 = 6.1$ Hz, J_2 = 8.0 Hz, H-15), 5.78 (1H, dd, J_1 = 2.8 Hz, J_2 = 8.8 Hz, H-11), 3.29 (1H, d, J = 11.1 Hz, H-17), 3.21 (1H, d, J = 11.1 Hz, H-17), 2.90 (1H, dd, $J_1 = 2.8$ Hz, $J_2 = 6.1$ Hz, H-12), 1.97 (3H, s, MeCOO), 0.94, 0.84, 0.81 (3H each, s); ¹³C NMR (δ, CDCl₃) 40.1 (C-1), 18.5 (C-2), 40.8 (C-3), 33.4 (C-4), 56.1 (C-5), 19.7 (C-6), 36.8 (C-7), 42.0 (C-8), 59.0 (C-9), 40.8 (C-10), 74.3 (C-11), 44.1 (C-12), 127.7 (C-13), 139.9 (C-14), 48.5 (C-15), 75.7 (C-16), 69.3 (C-17), 34.2 (C-18), 22.2 (C-19), 17.4 (C-20), 22.0 (MeCO), 171.4 (Me*CO*); CIMS (CH₄) m/z 363 [M + 1]⁺ (5), 303 (12), 285 (45), 267 (100); HRMS (CI) calcd for C₂₂H₃₄O₄ 363.2535, found 363.2506.

Oxidation of *ent*-17-Acetoxy-11 β ,16 α -dihydroxyatis-13-ene (4). Compound 4 (700 mg) was dissolved in Me₂CO (12 mL) and oxidized with Jones' reagent for 1 h at room temperature. Purification by flash chromatography gave 625 mg of **6** (90%).

ent-17-Acetoxy-16α-hydroxyatis-13-en-11-one (6): mp 128–130 °C; [α]²⁵_D –142° (*c* 0.5, CHCl₃); IR νmax (CHCl₃) 3505, 1718, 1730, 740; ¹H NMR (δ, CDCl₃) 6.21 (1H, d, J = 7.9 Hz, H-14), 5.89 (1H, dd, $J_I = 6.2$ Hz, $J_Z = 7.9$ Hz, H-15), 3.88 (1H, d, J = 11.3 Hz, H-17), 3.80 (1H, d, J = 11.3 Hz, H-17), 3.14 (1H, d, J = 6.2 Hz, H-12), 2.59 (1H, ddd, $J_I = J_2 = 3.3$ Hz, $J_3 = 13.4$ Hz, H-1), 2.08 (3H, s, MeCOO), 1.89 (1H, ddd, $J_I = J_2 = 3.0$ Hz, $J_3 = 13.1$ Hz, H-7), 1.79 (1H, s, H-9), 0.86, 0.77, 0.69 (3H each, s); ¹³C NMR (δ , CDCl₃) 39.6 (C-1), 18.5 (C-2), 41.9 (C-3), 33.4 (C-4), 55.3 (C-5), 18.8 (C-6), 36.7 (C-7), 39.8 (C-8), 59.0 (C-9), 41.6 (C-10), 210.2 (C-11), 60.9 (C-12), 122.7 (C-13), 142.1 (C-14), 47.4 (C-15), 75.5 (C-16), 68.8 (C-17), 33.8 (C-18), 21.8 (C-19), 17.4 (C-20), 20.9 (*Me*CO), 170.9 (Me*CO*); CIMS (CH₄) *m*/*z* 361 [M + 1]⁺ (8), 241 (15), 223 (30), 205 (100); HRMS (CI) calcd for C₂₂H₃₂O₄ 361.2378, found 361.2371.

Saponification of *ent*- 7α ,12 α ,17-**Triacetoxybeyer**-**15-ene (7).** Product 7 (1700 mg) was saponified with 70 mL of a MeOH-H₂O (30:70) solution with 5% of KOH for 5 h at room temperature. Working as described above and after flash chromatography, compound **8** was obtained (1530 mg, 90%).

ent-7α-Acetoxy-12α,17-dihydroxybeyer-15-ene (8): mp 165–167 °C; $[\alpha]^{25}_{D}$ –1° (*c* 0.5, CHCl₃); IR ν max (CHCl₃) 3450, 3055, 1730, 1255, 770; ¹H NMR (δ , CDCl₃) 5.70 (1H, d, J = 5.8 Hz, H-16), 5.56 (1H, d, J = 5.8 Hz, H-15), 4.91 (1H, dd, $J_I = J_2 = 2.8$ Hz, H-7), 3.97 (1H, br s, H-12), 3.79 (1H, d, J = 10.6 Hz, H-17), 3.57 (1H, d, J= 10.6 Hz, H-17), 2.04 (3H, s, MeCOO), 0.78, 0.78, 0.67 (3H each, s); ¹³C NMR (δ , CDCl₃) 38.6 (C-1), 18.3 (C-2), 41.8 (C-3), 32.5 (C-4), 47.8 (C-5), 25.2 (C-6), 75.6 (C-7), 53.4 (C-8), 44.2 (C-9), 36.8 (C-10), 29.2 (C-11), 70.1 (C-12), 53.1 (C-13), 44.8 (C-14), 136.0 (C-15), 133.4 (C-16), 68.9 (C-17), 33.2 (C-18), 21.6 (C-19), 13.8 (C-20), 21.3 (*Me*CO), 170.8 (Me*CO*); CIMS (CH₄) *m*/*z* 363 [M + 1]⁺ (10), 303 (12), 285 (24), 267 (100); HRMS (CI) calcd for C₂₂H₃₄O₄ 363.2535, found 363.02547.

Silylation at C-17 of *ent*-7 α -Acetoxy-12 α ,17-dihydroxybeyer-15-ene (8). Compound 8 (900 mg) was dissolved in 10 mL of pyridine and TBDMS (590 mg) was added. The reaction was maintained at room temperature for 24 h, and it was stopped by addition of a few drops of MeOH. The reaction mixture was extracted with CH₂Cl₂ and dried with anhydrous Na₂-SO₄. After flash chromatography, 830 mg of **9** (90%) was obtained.

ent-7a-Acetoxy-12a-hydroxy-17-(tert-butyldime**thylsilyl)beyer-15-ene (9):** syrup; $[\alpha]^{25}_{D}$ 34° (*c* 1, CHCl₃); IR vmax (CHCl₃) 3475, 1728, 1265, 1245; ¹H NMR (δ , CDCl₃) 5.72 (1H, d, J = 5.7 Hz, H-16), 5.48 (1H, d, J = 5.7 Hz, H-15), 4.94 (1H, dd, $J_1 = J_2 = 2.8$ Hz, H-7), 3.98 (1H, br s, H-12), 3.88 (1H, d, J = 10.5Hz, H-17), 3.54 (1H, d, J = 10.5 Hz, H-17), 2.34 (1H, dd, $J_1 = 10.6$ Hz, $J_2 = 16.8$ Hz, H-11), 2.24 (1H, dd, J_1 = 6.6 Hz, $J_2 = 16.8$ Hz, H-11), 2.04 (3H, s, MeCOO), 0.87 (9H, s, Me₃C), 0.77, 0.77, 0.68 (3H each, s), 0.00 (6H, s, Me₂Si); ¹³C NMR (δ, CDCl₃) 38.6 (C-1), 18.5 (C-2), 42.0 (C-3), 32.6 (C-4), 48.0 (C-5), 25.3 (C-6), 75.6 (C-7), 53.4 (C-8), 44.1 (C-9), 36.9 (C-10), 28.7 (C-11), 70.5 (C-12), 53.5 (C-13), 45.6 (C-14), 136.1 (C-15), 133.2 (C-16), 70.4 (C-17), 33.3 (C-18), 21.7 (C-19), 14.0 (C-20), 25.8 (Me₃C), 18.2 (Me₃C), -5.6 (Me₂Si), 21.3 (MeCO), 170.7 (MeCO); CIMS (CH₄) m/z 477 [M + 1]⁺ (5), 417 (18), 399 (4), 267 (100); HRMS (CI) calcd for C₂₈H₄₈O₄ 477.3400, found 477.3387.

Oxidation of *ent*-7α-Acetoxy-12α-hydroxy-17-(*tert*-butyldimethylsilyl)beyer-15-ene (9). CrO₃ (4200 mg) was added to a stirred solution of 800 mg of 9 in pyridine (10 mL). After 2 h at room temperature, the reaction mixture was extracted with Et₂O, washed with saturated KHSO₄, dried, and evaporated. Purification by flash chromatography provided 730 mg of **10** (90%).

ent-7α-Acetoxy-17-(tert-butyldimethylsilyl)bever-**15-en-12-one (10):** mp 148–150 °C; $[\alpha]^{25}_{D}$ –15° (*c* 0.5, CHCl₃); IR vmax (CHCl₃) 1748, 1732, 1245, 770; ¹H NMR (δ , CDCl₃) 5.95 (1H, d, J = 5.7 Hz, H-16), 5.78 (1H, d, J = 5.7 Hz, H-15), 5.07 (1H, dd, $J_1 = J_2 = 2.8$ Hz, H-7), 3.84 (1H, d, J = 10.5 Hz, H-17), 3.63 (1H, d, J = 10.5 Hz, H-17), 2.36 (1H, dd, $J_1 = 10.5$ Hz, $J_2 =$ 16.8 Hz, H-11), 2.25 (1H, dd, $J_1 = 6.7$ Hz, $J_2 = 16.8$ Hz, H-11), 2.05 (3H, s, MeCOO), 0.84 (9H, s, Me₃C), 0.80, 0.80, 0.76 (3H each, s), 0.00 (6H, s, Me₂Si); ¹³C NMR (d, CDCl₃) 38.1 (C-1), 18.3 (C-2), 41.8 (C-3), 32.6 (C-4), 47.7 (C-5), 25.0 (C-6), 74.9 (C-7), 52.5 (C-8), 49.8 (C-9), 37.6 (C-10), 36.3 (C-11), 210.4 (C-12), 63.0 (C-13), 49.0 (C-14), 137.5 (C-15), 134.7 (C-16), 61.7 (C-17), 33.1 (C-18), 21.5 (C-19), 13.5 (C-20), 26.0 (Me_3C), 18.4 (Me_3C), -5.4 (Me₂Si), 21.3 (MeCO), 170.4 (MeCO); CIMS (CH₄) m/z 475 [M + 1]⁺ (3), 415 (12), 397 (6), 265 (100); HRMS (CI) calcd for C₂₈H₄₆O₄ 475.3243, found 475.3232.

Cleavage of *ent*- 7α -Acetoxy-17-(*tert*-butyldimethylsilyl)beyer-15-en-12-one (10). A stirred solution of 700 mg of 10 in CH₂Cl₂ (20 mL) was treated with a few drops of BF₃ at room temperature for 3 h. The solution was concentrated, and after purification and separation by flash chromatography, 11 (625 mg, 90%) was obtained.

ent-7a-Acetoxy-17-hydroxybeyer-15-en-12-one (11): mp 154–156 °C; $[\alpha]^{25}_{D}$ –299° (c 0.5, CHCl₃); IR ν max (CHCl₃) 3505, 1735, 1728, 1260; ¹H NMR (δ , CDCl₃) 6.04 (1H, d, J = 5.7 Hz, H-16), 5.70 (1H, d, J = 5.7 Hz, H-15), 5.09 (1H, dd, $J_1 = J_2 = 2.8$ Hz, H-7), 3.70 (1H, dd, $J_1 = 5.8$ Hz, $J_2 = 11.7$ Hz, H-17), 3.60 (1H, dd, $J_1 = 7.6$ Hz, $J_2 = 11.7$ Hz, H-17), 2.39 (1H, dd, $J_1 =$ 10.4 Hz, $J_2 = 17.0$ Hz, H-11), 2.29 (1H, dd, $J_1 = 6.8$ Hz, $J_2 = 17.0$ Hz, H-11), 2.05 (3H, s, MeCOO), 0.81, 0.81, 0.77 (3H each, s); ¹³C NMR (δ, CDCl₃) 38.1 (C-1), 21.2 (C-2), 41.8 (C-3), 32.6 (C-4), 47.7 (C-5), 25.2 (C-6), 74.5 (C-7), 52.3 (C-8), 47.7 (C-9), 37.4 (C-10), 36.3 (C-11), 213.2 (C-12), 62.9 (C-13), 49.7 (C-14), 138.5 (C-15), 133.3 (C-16), 64.0 (C-17), 33.1 (C-18), 21.5 (C-19), 13.5 (C-20), 21.2 (MeCO), 170.3 (MeCO); CIMS (CH₄) m/z 361 [M + 1]⁺ (1), 301 (100), 241 (89), 229 (93); HRMS (CI) calcd for C₂₂H₃₂O₄ 361.2378, found 361.2363.

Biotransformation of *ent*-11 β -Acetoxy-16 α ,17-dihydroxyatis-13-ene (5) with *Rhizopus nigricans*. Substrate 5 (300 mg) was dissolved in EtOH (5 mL) and the solution distributed among five Erlenmeyer flask cultures. These were incubated for 8 days, and the metabolites were recovered and chromatographed on Si to obtain 12 (94 mg, 30%), 13 (97 mg, 35%), and starting material (60 mg, 20%).

ent-11 β -Acetoxy-3 β ,16 α ,17-trihydroxyatis-13ene (12): mp 230–232 °C; [α]²⁵_D –81° (c 0.5, CH₃OH); IR ν max (CHCl₃) 3480, 2950, 1718, 1174, 740; ¹H NMR (δ , CDCl₃) 6.15 (1H, d, J = 8.0 Hz, H-14), 5.93 (1H, dd, J_I = 6.1 Hz, J_2 = 8.0 Hz, H-15), 5.83 (1H, dd, J_I = 2.8 Hz, J_2 = 8.8 Hz, H-11), 3.30 (1H, d, J = 11.0 Hz, H-17), 3.21 (1H, d, J = 11.0 Hz, H-17), 3.22 (1H, dd, J_I = 4.5 Hz, J_2 = 11.7 Hz, H-3), 2.90 (1H, dd, J_I = 2.8 Hz, J_2 = 6.4 Hz, H-12), 1.99 (3H, s, MeCOO), 0.97, 0.95, 0.80 (3H each, s); ¹³C NMR (δ , CDCl₃) 38.6 (C-1), 27.0 (C-2), 78.8 (C-3), 38.7 (C-4), 55.5 (C-5), 19.4 (C-6), 36.6 (C-7), 39.1 (C-8), 58.9 (C-9), 39.9 (C-10), 73.8 (C-11), 44.2 (C-12), 127.8 (C-13), 139.6 (C-14), 48.2 (C-15), 75.6 (C-16), 69.2 (C-17), 28.7 (C-18), 17.3 (C-19), 15.6 (C-20), 21.9 (*Me*CO), 171.0 (Me*CO*); CIMS (CH₄) m/z 379 [M + 1]⁺ (10), 361 (8), 343 (20), 325 (23), 319 (100); HRMS (CI) calcd for C₂₂H₃₄O₅ 379.2425, found 379.2440.

ent-3 β ,11 β ,16 α ,17-Tetrahydroxyatis-13-ene (13): mp 236–238 °C; $[\alpha]^{25}$ –26° (c 1, CH₃OH); IR vmax (CHCl₃) 3515, 2955, 1180, 745; ¹H NMR (δ, MeOD) 6.13 (1H, d, J = 7.9 Hz, H-14), 6.00 (1H, dd, $J_1 = 6.3$ Hz, J_2 = 7.9 Hz, H-15), 4.77 (1H, dd, J_1 = 2.8 Hz, J_2 = 8.5 Hz, H-11), 3.25 (1H, d, J = 11.2 Hz, H-17), 3.11 (1H, d, J =11.2 Hz, H-17), 3.18 (1H, dd, $J_1 = 4.5$ Hz, $J_2 = 11.6$ Hz, H-3), 2.94 (1H, dd, $J_1 = 2.8$ Hz, $J_2 = 6.3$ Hz, H-12), 2.34 (1H, ddd, $J_1 = J_2 = 3.4$ Hz, $J_3 = 13.2$ Hz, H-1), 1.86 (1H, ddd, $J_1 = J_2 = 3.1$ Hz, $J_3 = 13.2$ Hz, H-7), 1.00, 0.98, 0.80 (3H each, s); ¹³C NMR (δ, CDCl₃) 40.2 (C-1), 27.8 (C-2), 79.9 (C-3), 40.1 (C-4), 57.1 (C-5), 20.6 (C-6), 38.1 (C-7), 40.1 (C-8), 61.9 (C-9), 41.1 (C-10), 71.6 (C-11), 49.3 (C-12), 129.8 (C-13), 140.6 (C-14), 49.7 (C-15), 76.9 (C-16), 70.1 (C-17), 29.4 (C-18), 18.1 (C-19), 16.6 (C-20); CIMS (CH₄) m/z 337 [M + 1]⁺ (5), 319 (10), 301 (18), 283 (100); HRMS (CI) calcd for C₂₀H₃₂O₄ 337.2378, found 337.2386.

Biotransformation of *ent*-11 β -Acetoxy-16 α ,17-dihydroxyatis-13-ene (5) with *Fusarium moniliforme*. Substrate 5 (300 mg) was dissolved in EtOH (5 mL) and the solution distributed among five Erlenmeyer flask cultures. These were incubated for 12 days, and the metabolites were recovered and chromatographed on Si to obtain 14 (22 mg, 7%) and starting material (230 mg, 80%).

ent-11β-Acetoxy-7a,16a,17-trihydroxyatis-13**ene (14):** syrup; $[\alpha]^{25}_{D}$ -99° (*c* 1, CHCl₃); IR *v*max (CHCl₃) 3460, 1740, 1645, 740; ¹H NMR (δ, CDCl₃) 6.45 (1H, d, J = 8.2 Hz, H-14), 5.99 (1H, dd, $J_1 = 6.2$ Hz, J_2 = 8.2 Hz, H-15), 5.84 (1H, dd, $J_1 =$ 2.7 Hz, $J_2 =$ 8.4 Hz, H-11), 3.32 (1H, d, J = 11.0 Hz, H-17), 3.24 (1H, d, J = 11.0 Hz, H-17), 3.49 (1H, dd, $J_1 = 5.1$ Hz, $J_2 = 11.5$ Hz, H-7), 2.89 (1H, dd, $J_1 = 2.7$ Hz, $J_2 = 6.2$ Hz, H-12), 1.98 (3H, s, MeCOO), 0.95, 0.87, 0.83 (3H each, s); ¹³C NMR (δ, CDCl₃) 40.3 (C-1), 18.3 (C-2), 41.6 (C-3), 33.2 (C-4), 52.9 (C-5), 29.2 (C-6), 75.9 (C-7), 46.4 (C-8), 58.3 (C-9), 38.9 (C-10), 73.5 (C-11), 44.5 (C-12), 127.7 (C-13), 134.8 (C-14), 44.8 (C-15), 75.6 (C-16), 69.3 (C-17), 34.0 (C-18), 22.1 (C-19), 17.3 (C-20), 21.9 (MeCO), 171.1 (MeCO); CIMS (CH₄) m/z 379 [M + 1]⁺ (6), 361 (12), 343 (25), 325 (30), 319 (100); HRMS (CI) calcd for C₂₂H₃₄O₅ 379.2425, found 379.2435.

Biotransformation of *ent*-17-Acetoxy-16 α -hydroxyatis-13-en-11-one (6) with *Fusarium moniliforme*. Substrate 6 (300 mg) was dissolved in EtOH (5 mL) and the solution distributed among five Erlenmeyer flask cultures. These were incubated for 12 days, and the metabolites were recovered and chromatographed on Si to obtain 15 (22 mg, 8%), 16 (8.5 mg, 3%), and starting material (180 mg, 60%).

ent-16α,17-Dihydroxyatis-13-en-11-one (15): mp 208–210 °C; $[\alpha]^{25}_{D}$ –139° (*c* 1, CHCl₃); IR *ν*max (CHCl₃) 3500, 1720, 745; ¹H NMR (δ , CDCl₃) 6.19 (1H, d, *J* = 7.9 Hz, H-14), 5.91 (1H, dd, *J*₁ = 6.2 Hz, *J*₂ = 7.9 Hz, H-15), 3.67 (1H, d, *J* = 11.1 Hz, H-17), 3.32 (1H, d, *J* = 11.1 Hz, H-17), 3.25 (1H, d, *J* = 6.2 Hz, H-12), 2.60 (1H, ddd, *J*₁ = 3.1 Hz, *J*₂ = 5.0 Hz, *J*₃ = 13.5 Hz, H-1), 1.89

(1H, ddd, $J_1 = J_2 = 3.0$ Hz, $J_3 = 10.0$ Hz, H-7), 1.80 (1H, s, H-9), 0.87, 0.77, 0.70 (3H each, s); ¹³C NMR (δ , CDCl₃) 39.9 (C-1), 18.5 (C-2), 41.9 (C-3), 33.4 (C-4), 55.3 (C-5), 18.9 (C-6), 36.8 (C-7), 39.7 (C-8), 58.5 (C-9), 41.7 (C-10), 211.6 (C-11), 61.3 (C-12), 122.9 (C-13), 141.9 (C-14), 47.5 (C-15), 77.0 (C-16), 67.8 (C-17), 33.9 (C-18), 21.8 (C-19), 17.5 (C-20); CIMS (CH₄) m/z 319 [M + 1]⁺ (4), 301 (17), 283 (100); HRMS (CI) calcd for C₂₀H₃₀O₅ 319.2273, found 319.2277.

ent-6α,16α,17-Trihydroxyatis-13-en-11-one (16): syrup; $[\alpha]^{25}_{\rm D} -5^{\circ}$ (*c* 0.5, CHCl₃); IR *v*max (CHCl₃) 3440, 1725, 1650, 740; ¹H NMR (δ , CDCl₃) 6.24 (1H, d, *J* = 7.2 Hz, H-14), 5.92 (1H, dd, *J*₁ = 6.4 Hz, *J*₂ = 7.2 Hz, H-15), 4.04 (1H, ddd, *J*₁ = *J*₂ = 10.5 Hz, *J*₃ = 4.5 Hz, H-6), 3.35 (2H, br s, H-17), 3.27 (1H, d, *J* = 6.4 Hz, H-12), 2.65 (1H, ddd, *J*₁ = *J*₂ = 3.3 Hz, *J*₃ = 13.6 Hz, H-11), 1.83 (1H, s, H-9), 1.16, 1.02, 0.77 (3H each, s); ¹³C NMR (δ , CDCl₃) 39.5 (C-1), 18.4 (C-2), 43.9 (C-3), 33.8 (C-4), 58.8 (C-5), 68.0 (C-6), 47.7 (C-7), 41.7 (C-8), 60.4 (C-9), 41.6 (C-10), 209.1 (C-11), 60.2 (C-12), 123.1 (C-13), 141.7 (C-14), 47.5 (C-15), 76.4 (C-16), 67.6 (C-17), 37.2 (C-18), 22.5 (C-19), 18.6 (C-20); CIMS (CH₄) *m*/*z* 335 [M + 1]⁺ (3), 317 (8), 299 (30), 281 (100); HRMS (CI) calcd for C₂₀H₃₀O₄ 335.2222, found 335.2210.

Biotransformation of *ent*-17-Acetoxy-16 α -hydroxyatis-13-en-11-one (6) with *Rhizopus nigricans*. Substrate 6 (300 mg) was dissolved in EtOH (5 mL) and the solution distributed among five Erlenmeyer flask cultures. These were incubated for 8 days, and the metabolites were recovered and chromatographed on Si to obtain 13 (8.5 mg, 3%), 15 (22 mg, 8%), 17 (35 mg, 11%), 18 (145 mg, 52%), and starting material (45 mg, 15%).

ent-17-Acetoxy-3β,16α-dihydroxyatis-13-en-11**one (17):** mp 184–186 °C; $[\alpha]^{25}_{D}$ –148° (*c* 1, CHCl₃); IR ν max (CHCl₃) 3470, 1740, 1715, 1640; ¹H NMR (δ , $CDCl_3$) 6.21 (1H, d, J = 7.9 Hz, H-14), 5.89 (1H, dd, J_1 = 6.6 Hz, $J_2 = 7.9$ Hz, H-15), 3.88 (1H, d, J = 11.4 Hz, H-17), 3.80 (1H, d, J = 11.4 Hz, H-17), 3.21 (1H, d, J_1 = 4.6 Hz, J_2 = 11.5 Hz, H-3), 3.14 (1H, d, J = 6.6 Hz, H-12), 2.63 (1H, ddd, $J_1 = J_2 = 3.3$ Hz, $J_3 = 13.7$ Hz, H-1), 2.07 (3H, s, MeCOO), 1.94 (1H, ddd, $J_1 = J_2 = 5.0$ Hz, $J_3 = 11.4$ Hz, H-7), 1.77 (1H, s, H-9), 0.97, 0.74, 0.67 (3H each, s); ¹³C NMR (δ, CDCl₃) 37.7 (C-1), 27.2 (C-2), 78.6 (C-3), 39.1 (C-4), 54.5 (C-5), 18.6 (C-6), 36.6 (C-7), 39.3 (C-8), 59.0 (C-9), 41.2 (C-10), 210.0 (C-11), 60.7 (C-12), 122.9 (C-13), 141.9 (C-14), 47.3 (C-15), 75.5 (C-16), 68.8 (C-17), 28.5 (C-18), 17.3 (C-19), 15.6 (C-20), 20.9 (MeCO), 170.9 (MeCO); CIMS (CH₄) m/z 377 [M + 1]⁺ (6), 317 (80), 299 (35), 281 (100); HRMS (CI) calcd for C₂₂H₃₂O₅ 377.2328, found 377.2315.

ent- 3β ,16 α ,17-**Trihydroxyatis-13-en-11-one (18):** mp 217–219 °C; $[\alpha]^{25}_{D}$ –1° (*c* 0.5, CH₃OH); IR ν max (CHCl₃) 3490, 1720, 1645, 740; ¹H NMR (δ , MeOD) 6.24 (1H, d, J = 7.9 Hz, H-14), 5.92 (1H, dd, $J_I = 6.8$ Hz, $J_2 = 7.9$ Hz, H-15), 3.29 (1H, d, J = 11.4 Hz, H-17), 3.22 (1H, d, J = 11.4 Hz, H-17), 3.19 (1H, d, $J_I = 4.7$ Hz, $J_2 = 11.5$ Hz, H-3), 3.17 (1H, d, J = 6.8 Hz, H-12), 2.66 (1H, ddd, $J_I = J_2 = 3.5$ Hz, $J_3 = 13.7$ Hz, H-1), 1.95 (1H, ddd, $J_I = J_2 = 2.4$ Hz, $J_3 = 12.7$ Hz, H-7), 1.77 (1H, s, H-9), 1.00, 0.76, 0.72 (3H each, s); ¹³C NMR (δ , MeOD) 39.2 (C-1), 27.8 (C-2), 79.3 (C-3), 40.2 (C-4), 55.9 (C-5), 19.8 (C-6), 37.9 (C-7), 40.4 (C-8), 62.3 (C-9), 42.6 (C-10), 212.8 (C-11), 60.0 (C-12), 124.3 (C-13), 142.8 (C-14), 48.5 (C-15), 77.8 (C-16), 68.7 (C-17), 29.0 (C-18),

Biotransformation of ent-Beyer-15-ene derivatives

17.7 (C-19), 16.3 (C-20); CIMS (CH₄) m/z 335 [M + 1]⁺ (4), 317 (40), 299 (15), 281 (100); HRMS (CI) calcd for C₂₀H₃₀O₄ 335.2222, found 335.2230.

Biotransformation of *ent*-7 α -Acetoxy-12 α ,17-dihydroxybeyer-15-ene (8) with *Rhizopus nigricans*. Substrate 8 (300 mg) was dissolved in EtOH (5 mL) and the solution distributed among five Erlenmeyer flask cultures. These were incubated for 12 days, and the metabolites were recovered and chromatographed on Si to obtain **19** (250 mg, 80%), **20** (16 mg, 5%), and starting material (15 mg, 5%).

ent-7a-Acetoxy-3*β*,12a,17-trihydroxybeyer-15**ene (19):** mp 196–198 °C; [α]²⁵_D 51° (*c* 1, CH₃OH); IR νmax (CHCl₃) 3502, 1712, 1247; ¹H NMR (δ, MeOD) 5.82 (1H, d, J = 5.9 Hz, H-16), 5.77 (1H, d, J = 5.9 Hz, H-15), 4.90 (1H, dd, $J_1 = J_2 = 2.7$ Hz, H-7), 3.89 (1H, br s, H-12), 3.64 (1H, d, J = 10.9 Hz, H-17), 3.45 (1H, d, J = 10.9 Hz, H-17), 3.18 (1H, dd, $J_1 = J_2 = 7.0$ Hz, H-3), 2.05 (3H, s, MeCOO), 0.91, 0.78, 0.75 (3H each, s); ¹³C NMR (ô, MeOD) 38.3 (C-1), 27.8 (C-2), 79.5 (C-3), 37.8 (C-4), 48.7 (C-5), 26.0 (C-6), 77.4 (C-7), 55.4 (C-8), 45.7 (C-9), 39.4 (C-10), 30.2 (C-11), 68.1 (C-12), 53.9 (C-13), 45.2 (C-14), 136.4 (C-15), 136.1 (C-16), 66.4 (C-17), 28.7 (C-18), 16.3 (C-19), 14.4 (C-20), 21.2 (MeCO), 172.3 (MeCO); CIMS (CH₄) m/z 379 [M + 1]⁺ (2), 361 (57), 301 (100), 283 (60); HRMS (CI) calcd for C₂₂H₃₄O₅ 379.2484, found 379.2476.

ent-7 α -Acetoxy-3 β ,12 α ,17-trihydroxy-15 α ,16 α -ep**oxybeyerane (20):** mp 140–142 °C; $[\alpha]^{25}_{D}$ 19° (*c* 0.5, CH₃OH); IR vmax (CHCl₃) 3469, 1735, 1256; ¹H NMR (δ , MeOD) 3.32 (1H, d, J = 2.9 Hz, H-16), 3.46 (1H, d, J = 2.9 Hz, H-15), 5.07 (1H, dd, $J_1 = J_2 = 2.8$ Hz, H-7), 4.11 (1H, br s, H-12), 3.69 (1H, d, J = 10.9 Hz, H-17), 3.44 (1H, d, J = 10.9 Hz, H-17), 3.18 (1H, dd, $J_1 = 6.2$ Hz, $J_2 = 8.4$ Hz, H-3), 2.02 (3H, s, MeCOO), 0.97, 0.91, 0.80 (3H each, s); ¹³C NMR (δ, MeOD) 38.6 (C-1), 27.8 (C-2), 79.4 (C-3), 38.0 (C-4), 48.7 (C-5), 25.9 (C-6), 75.0 (C-7), 51.0 (C-8), 49.2 (C-9), 39.4 (C-10), 29.3 (C-11), 67.9 (C-12), 49.3 (C-13), 31.7 (C-14), 57.1 (C-15), 55.4 (C-16), 63.2 (C-17), 28.6 (C-18), 16.1 (C-19), 15.8 (C-20), 21.1 (MeCO), 172.1 (MeCO); CIMS (CH₄) m/z 395 [M + 1]⁺ (6), 377 (29), 335 (56), 317 (100); HRMS (CI) calcd for C₂₂H₃₄O₆ 395.2433, found 395.2422.

Biotransformation of *ent*-7 α -Acetoxy-12 α ,17-dihydroxybeyer-15-ene (8) with *Fusarium moniliforme*. Substrate 8 (300 mg) was dissolved in EtOH (5 mL) and the solution distributed among five Erlenmeyer flask cultures. These were incubated for 17 days, and the metabolites were recovered and chromatographed on Si to obtain 21 (10 mg, 3%), 11 (16 mg, 5%), and starting material (255 mg, 85%).

ent-7α-Acetoxy-12α,17-dihydroxy-15α,16α-epoxybeyerane (21): mp 192–194 °C; $[\alpha]^{25}{}_{\rm D}$ 20° (*c* 0.5, CHCl₃); IR ν max (CHCl₃) 3436, 1734, 1250; ¹H NMR (δ , CDCl₃) 3.14 (1H, d, J= 3.1 Hz, H-16), 3.37 (1H, d, J= 3.1 Hz, H-15), 5.11 (1H, dd, $J_I = J_2 = 2.7$ Hz, H-7), 4.17 (1H, dd, $J_I = J_2 = 2.3$ Hz, H-12), 3.80 (1H, d, J= 10.8 Hz, H-17), 3.75 (1H, d, J = 10.8 Hz, H-17), 2.02 (3H, s, MeCOO), 0.89, 0.80, 0.78 (3H each, s); ¹³C NMR (δ , CDCl₃) 38.9 (C-1), 18.4 (C-2), 41.8 (C-3), 32.6 (C-4), 47.9 (C-5), 25.1 (C-6), 73.4 (C-7), 49.3 (C-8), 47.7 (C-9), 37.2 (C-10), 28.3 (C-11), 70.0 (C-12), 48.1 (C-13), 30.9 (C-14), 56.0 (C-15), 54.2 (C-16), 65.7 (C-17), 33.2 (C-18), 21.6 (C-19), 15.5 (C-20), 21.3 (*Me*CO), 170.5 (Me*CO*); CIMS (CH₄) m/z 379 [M + 1]⁺ (3), 361 (8), 319 (100), 301 (25); HRMS (CI) calcd for C₂₂H₃₄O₅ 379.2484, found 379.2469.

Epoxidation of *ent*-7 α -Acetoxy-12 α ,17-dihydroxybeyer-15-ene (8). Product 8 (50 mg) was epoxidized with 50 mg of *m*-CPBA in 3 mL of CHCl₃ for 24 h at room temperature. The reaction mixture was then diluted with CHCl₃; washed with aqueous FeSO₄, aqueous NaHCO₃, and H₂O; dried; and concentrated. Purification by flash chromatography provided **21** (47 mg, 90%), identical to that previously obtained by the biotransformation of **8** with *F. moniliforme*.

Biotransformation of *ent*-7α-Acetoxy-17-hydroxybeyer-15-en-12-one (11) with *Rhizopus nigricans*. Substrate 11 (300 mg) was dissolved in EtOH (5 mL) and the solution distributed among five Erlenmeyer flask cultures. These were incubated for 12 days, and the metabolites were recovered and chromatographed on Si to obtain 22 (245 mg, 78%), 23 (21 mg, 6.5%), and starting material (21 mg, 7%).

ent-7a-Acetoxy-3*β*,17-dihydroxybeyer-15-en-12**one (22):** mp 201–203 °C; $[\alpha]^{25}_{D}$ –282° (*c* 1, CHCl₃); IR νmax (CHCl₃) 3484, 1720, 1257; ¹H NMR (δ, CDCl₃) 5.98 (1H, d, J = 5.7 Hz, H-16), 5.91 (1H, d, J = 5.7 Hz, H-15), 5.05 (1H, dd, $J_1 = J_2 = 2.7$ Hz, H-7), 3.65 (1H, d, J = 11.7 Hz, H-17), 3.54 (1H, d, J = 11.7 Hz, H-17), 3.18 (1H, dd, $J_1 = 4.7$ Hz, $J_2 = 11.4$ Hz, H-3), 2.00 (3H, s, MeCOO), 0.87, 0.72, 0.72 (3H each, s); ¹³C NMR (δ, CDCl₃) 36.2 (C-1), 26.7 (C-2), 78.2 (C-3), 36.9 (C-4), 46.8 (C-5), 24.8 (C-6), 74.1 (C-7), 52.2 (C-8), 49.4 (C-9), 38.1 (C-10), 36.1 (C-11), 212.6 (C-12), 62.8 (C-13), 49.3 (C-14), 138.1 (C-15), 133.4 (C-16), 63.4 (C-17), 27.8 (C-18), 15.3 (C-19), 13.4 (C-20), 21.1 (MeCO), 170.2 (MeCO); CIMS (CH₄) m/z 377 [M + 1]⁺ (3), 359 (22), 341 (35), 281 (100); HRMS (CI) calcd for C₂₂H₃₂O₅ 377.2328, found 377.2323.

ent-7α-Acetoxy-3β,17-dihydroxy-15α,16α-epoxy**beyeran-12-one (23):** mp 254–256 °C; [α]²⁵_D –145° (*c* 0.5, CHCl₃); IR vmax (CHCl₃) 3448, 1737, 1712, 1242; ¹H NMR (δ , CDCl₃) 3.59 (1H, d, J = 3.0 Hz, H-16), 3.62 (1H, d, J = 3.0 Hz, H-15), 5.28 (1H, dd, $J_1 = J_2 = 2.7$ Hz, H-7), 3.83 (1H, d, J = 11.8 Hz, H-17), 3.66 (1H, d, J = 11.8 Hz, H-17), 3.25 (1H, dd, $J_1 = 4.7$ Hz, $J_2 = 11.3$ Hz, H-3), 2.02 (3H, s, MeCOO), 0.99, 0.93, 0.80 (3H each, s); ¹³C NMR (δ, CDCl₃) 36.9 (C-1), 26.9 (C-2), 78.3 (C-3), 38.3 (C-4), 46.9 (C-5), 24.7 (C-6), 72.0 (C-7), 47.7 (C-8), 52.4 (C-9), 36.9 (C-10), 37.4 (C-11), 211.4 (C-12), 59.2 (C-13), 35.3 (C-14), 55.2 (C-15), 54.1 (C-16), 61.4 (C-17), 27.9 (C-18), 15.6 (C-19), 15.4 (C-20), 21.1 (MeCO), 169.9 (MeCO); CIMS (CH₄) m/z 393 [M + 1]⁺ (3), 375 (10), 357 (42), 297 (100); HRMS (CI) calcd for C₂₂H₃₂O₆ 393.2277, found 393.2272.

Biotransformation of *ent*-7α-Acetoxy-17-hydroxybeyer-15-en-12-one (11) with *Fusarium moniliforme.* Substrate 11 (300 mg) was dissolved in EtOH (5 mL) and the solution distributed among five Erlenmeyer flask cultures. These were incubated for 17 days, and the metabolites were recovered and chromatographed on Si to obtain 24 (9 mg, 3%), 25 (12.5 mg, 4%), 26 (14 mg, 5%), and starting material (240 mg, 80%).

ent-7 α -Acetoxy-17-hydroxy-15 α ,16 α -epoxybeyeran-12-one (24): mp 226-228 °C; $[\alpha]^{25}{}_{D}$ -72° (*c* 0.5, CHCl₃); IR ν max (CHCl₃) 3590, 1738, 1711, 1237; ¹H NMR (δ , CDCl₃) 3.58 (1H, d, J = 3.0 Hz, H-16), 3.64 (1H, d, J = 3.0 Hz, H-15), 5.27 (1H, dd, $J_1 = J_2 = 2.8$ Hz, H-7), 3.83 (1H, dd, $J_1 = 5.3$ Hz, $J_2 = 11.8$ Hz, H-17), 3.66 (1H, dd, $J_1 = 8.5$ Hz, $J_2 = 11.8$ Hz, H-17), 2.41 (1H, dd, $J_1 = 7.0$ Hz, $J_2 = 16.3$ Hz, H-11), 2.34 (1H, dd, $J_1 = 11.7$ Hz, $J_2 = 16.3$ Hz, H-11), 2.02 (3H, s, MeCOO), 0.99, 0.84, 0.82 (3H each, s); ¹³C NMR (δ , CDCl₃) 37.5 (C-1), 18.3 (C-2), 41.6 (C-3), 32.6 (C-4), 47.8 (C-5), 24.9 (C-6), 72.3 (C-7), 47.9 (C-8), 52.6 (C-9), 37.8 (C-10), 38.6 (C-11), 211.8 (C-12), 59.2 (C-13), 35.5 (C-14), 55.2 (C-15), 54.3 (C-16), 61.5 (C-17), 33.1 (C-18), 21.5 (C-19), 15.6 (C-20), 21.2 (*Me*CO), 170.0 (Me*CO*); CIMS (CH₄) m/z 377 [M + 1]⁺ (5), 359 (28), 341 (17), 297 (100); HRMS (CI) calcd for C₂₂H₃₂O₅ 377.2328, found 377.2327.

ent-7a-Acetoxy-1*β*,17-dihydroxybeyer-15-en-12**one (25):** mp 126–128 °C; $[\alpha]^{25}_{D}$ –319° (*c* 0.5, CHCl₃); IR νmax (CHCl₃) 3455, 1735, 1707, 1241; ¹H NMR (δ, CDCl₃) 6.01 (1H, d, *J* = 5.8 Hz, H-16), 5.95 (1H, d, *J* = 5.8 Hz, H-15), 5.05 (1H, dd, $J_1 = J_2 = 2.8$ Hz, H-7), 3.68 (1H, dd, $J_1 = 5.7$ Hz, $J_2 = 11.4$ Hz, H-17), 3.60 (1H, dd, $J_1 = 7.4$ Hz, $J_2 = 11.4$ Hz, H-17), 3.35 (1H, dd, $J_1 = 5.2$ Hz, $J_2 = 10.5$ Hz, H-1), 2.79 (1H, dd, $J_1 = 7.0$ Hz, $J_2 =$ 17.8 Hz, H-11), 2.66 (1H, dd, $J_1 = 9.9$ Hz, $J_2 = 17.8$ Hz, H-11), 2.05 (3H, s, MeCOO), 0.82, 0.81, 0.80 (3H each, s); ¹³C NMR (δ, CDCl₃) 79.3 (C-1), 29.5 (C-2), 39.7 (C-3), 32.5 (C-4), 50.1 (C-5), 24.9 (C-6), 74.5 (C-7), 53.0 (C-8), 46.4 (C-9), 42.9 (C-10), 39.9 (C-11), 213.7 (C-12), 62.7 (C-13), 49.3 (C-14), 138.1 (C-15), 133.9 (C-16), 64.0 (C-17), 32.9 (C-18), 21.2 (C-19), 9.3 (C-20), 21.1 (MeCO), 170.3 (Me*CO*); CIMS (CH₄) m/z 377 [M + 1]⁺ (4), 359 (23), 341 (24), 297 (100); HRMS (CI) calcd for C₂₂H₃₂O₅ 377.2328, found 377.2335.

ent-1 β ,7 α ,17-Trihydroxybeyer-15-en-12-one (26): mp 92–94 °C; $[\alpha]^{25}_{D}$ –146° (*c* 0.5, CHCl₃); IR *v*max (CHCl₃) 3321, 1702, 1242; ¹H NMR (δ, CDCl₃) 5.98 (1H, d, J = 5.7 Hz, H-16), 5.94 (1H, d, J = 5.7 Hz, H-15), 3.90 (1H, dd, $J_1 = J_2 = 2.9$ Hz, H-7), 3.76 (1H, d, J =11.6 Hz, H-17), 3.57 (1H, d, J = 11.6 Hz, H-17), 3.35 (1H, dd, $J_1 = 5.1$ Hz, $J_2 = 10.5$ Hz, H-1), 2.77 (1H, dd, $J_1 = 7.1$ Hz, $J_2 = 17.8$ Hz, H-11), 2.65 (1H, dd, $J_1 = 9.7$ Hz, $J_2 = 17.8$ Hz, H-11), 0.88, 0.83, 0.81 (3H each, s); ¹³C NMR (δ, CDCl₃) 79.3 (C-1), 29.6 (C-2), 39.8 (C-3), 32.5 (C-4), 48.7 (C-5), 27.9 (C-6), 72.0 (C-7), 54.4 (C-8), 45.1 (C-9), 43.0 (C-10), 39.9 (C-11), 214.1 (C-12), 62.7 (C-13), 49.6 (C-14), 139.1 (C-15), 133.4 (C-16), 64.1 (C-17), 32.8 (C-18), 21.4 (C-19), 9.3 (C-20); CIMS (CH₄) m/z $335 [M + 1]^+$ (6), 317 (44), 299 (100), 281 (42); HRMS (CI) calcd for C₂₀H₃₀O₄ 335.2222, found 335.2238.

Epoxidation of *ent*-7 α -Acetoxy-12 α ,17-dihydroxybeyer-15-ene (11). Product 11 (50 mg) was epoxidized with 50 mg of *m*-CPBA in 3 mL of CHCl₃ for 2 h at room temperature. The reaction mixture was then diluted with CHCl₃; washed with aqueous FeSO₄, aqueous NaHCO₃, and H₂O; dried; and concentrated. Purification by flash chromatography provided **24** (18 mg, 35%), identical to that previously obtained by the biotransformation of **11** with *F. moniliforme*, and **27** (23 mg, 45%).

ent-7a-Acetoxy-17-hydroxy-15a,16a-epoxybeye**ran-13,12-olide (27):** mp 126–128 °C; $[\alpha]^{25}_{D}$ 26° (*c* 0.5, CHCl₃); IR vmax (CHCl₃) 3428, 1734, 1710, 1258; ¹H NMR (δ , CDCl₃) 5.78 (1H, d, J = 5.2 Hz, H-16), 3.78 (1H, d, J = 5.2 Hz, H-15), 5.15 (1H, dd, $J_1 = J_2 = 2.7$ Hz, H-7), 3.77 (2H, br s, H-17), 2.82 (1H, dd, J₁ = 2.9 Hz, $J_2 = 13.4$ Hz, H-11), 2.69 (1H, dd, $J_1 = J_2 = 13.4$ Hz, H-11), 2.09 (3H, s, MeCOO), 1.00, 0.88, 0.87 (3H each, s); ¹³C NMR (δ, CDCl₃) 39.3 (C-1), 18.5 (C-2), 41.3 (C-3), 32.8 (C-4), 46.9 (C-5), 24.8 (C-6), 74.1 (C-7), 48.9 (C-8), 51.0 (C-9), 38.4 (C-10), 34.0 (C-11), 174.1 (C-12), 86.1 (C-13), 42.9 (C-14), 58.8 (C-15), 56.1 (C-16), 65.6 (C-17), 33.1 (C-18), 21.5 (C-19), 15.4 (C-20), 21.2 (MeCO), 169.7 (MeCO); CIMS (CH₄) m/z 393 [M + 1]⁺ (4), 375 (56), 315 (100); HRMS (CI) calcd for C₂₂H₃₂O₆ 393.4925, found 393.4933.

Acknowledgment. This work was supported by a grant from the Dirección General de Investigación Científica y Técnica. We thank Mr. Nick Morris for revising the English style of the manuscript.

References and Notes

- (1) Hanson, J. R. Nat. Prod. Rep. 1992, 9, 139-151.
- (2) Beilby, J. P.; Ghisalberti, E. L.; Jefferies, P. R. *Tetrahedron Lett.* 1973, 28, 2589–2592.
- (3) Bearder, J. R.; Frydman, V. M.; Gaskin, P.; MacMillan, J.; Wels, C. M.; Phinney, B. O. J. Chem. Soc. Perkin 1 1976, 173–176.
- (4) García-Granados, A.; Martínez, A.; Onorato, M. E.; Arias, J. M. J. Nat. Prod. 1985, 48, 371–375.
- (5) Díaz, C. E.; Fraga, B. M.; González, A. G.; Hanson, J. R.; Hernández, M. G.; San Martin, A. *Phytochemistry* **1985**, *24*, 1489–1491.
- (6) Ali, M. S.; Hanson, J. R.; De Oliveira, B. H. *Phytochemistry* 1992, *31*, 507–510.
- (7) García-Granados, A.; Guerrero, A.; Martínez, A.; Parra, A.; Arias, J. M. Phytochemistry 1994, 36, 657–663.
- (8) Hanson, J. R.; Fraga, B. M.; Sarah, F. Y.; Hernández, M. G. *Phytochemistry* **1979**, *18*, 1875–1876.
- (9) Fraga, B. M.; Guillermo, R.; Hanson, J. R.; *Phytochemistry* 1992, 31, 503–506.
- (10) García-Granados, A.; Parra, A.; Peña, A.; Saénz de Buruaga, A.; Saénz de Buruaga, J. M. *Tetrahedron Lett.* **1980**, *21*, 3611–3612.
- (11) García-Granados, A.; Parra, A.; Peña, A. An. Quim. 1981, 77C, 239–242.
- (12) García-Granados, A.; Parra, A.; Peña, A.; Saénz de Buruaga, A.; Saénz de Buruaga, J. M. An. Quim. 1981, 77C, 48–51.

NP960426K